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Introduction 
A game engine can enable the design of a detailed game world by providing interactive 

tools for editing the layout of objects in the scene. The 3D terrain is the primary “object” in 

many outdoor scenes and requires specialized processing for its geometry and texturing. By 

allowing the terrain to be edited with a set of brushes, similar to brushes found in image 

editing tools, a game developer can carefully craft the environment as part of the game 

engine workflow. My project allows the terrain to be sculpted, painted, and decorated with 

foliage with responsive brushes. When coupled with the existing scene editing tools, a 
detailed game world can be iteratively developed. 

 

Terrain Mesh 
A terrain mesh can be constructed as a grid of vertices forming a plane. The vertices can 

then have various heights to break up the plane and form terrain features like mountains or 

valleys. This mesh can be constructed from a heightmap image where each pixel in the 

image dictates the height at that vertex.  

Storing the terrain mesh as a traditional 3D mesh asset, where the vertex data is stored as a 

vertex buffer of 3D coordinates, is possible when the terrain does not change. However, this 

storage method limits the ability to make large scale changes to the terrain data at runtime, 

because the edited vertex buffer has to be reloaded onto the GPU. This is especially slow 

when the terrain is large and contains millions of vertices.  

https://youtu.be/L6XEXuVbLBU


To enable real-time editing, the terrain vertex buffer only contains the 2D positions of the 

vertices, which are constants. The height at each vertex is stored as a texture called the 

“heightfield”. In the vertex shader, the heightfield is sampled and the read value is used as 

the height value of the terrain. The advantage of this approach is that we can use shaders to 

edit this texture on the GPU, which is extremely fast and has immediate visual feedback for 

the small cost of sampling the heightfield texture in the vertex shader. 

The game engine provides an interface for generating, saving, and loading terrain assets. An 

asset can be generated from a heightmap image or as a flat plane ready to be edited. When 

saved, all data needed to recreate the terrain is serialized into a Protbuf file. This binary 

format is useful over a standard image format because we can add game specific properties 

and metadata to the terrain asset. This single-file asset can then entirely recreate the 

terrain mesh, textures, and foliage. The asset is stored independently from the scene file. 

This allows the scene file to remain as pure text that merely references the binary terrain 

asset. 

Quad Tree 
A hidden but essential component of the terrain system is the quad tree. This data structure 

is a tree of nodes where each node covers a rectangular area of the terrain. Each composite 

node has four children that break up the area into quadrants. The tree has a maximum 

depth which is composed of leaf nodes. This depth is chosen so that the leaf nodes are 

reasonably small. All nodes have a constant 2D rectangular area, but they also store the 

minimum and maximum height of all terrain vertices that fall within their area. This allows 

an axis-aligned bounding-box to be constructed around all parts of the terrain contained 

within a node. 

The primary purpose of the quad tree is to enable efficient intersection testing with the 

terrain using logarithmic, early-out algorithms. The most useful test in the engine context is 

a raycast, such as a raycast from the mouse position into 3D space. The raycast algorithm 

performs a ray vs AABB test starting with the root node, and continuing with the children 

for any test that returns true. Tests that do not need to be performed are skipped, and all 

leaf nodes that the ray intersects with are returned in a list. Then, for each leaf hit, the ray is 

tested against the terrain triangles within that leaf. This is still fast when the leaves are 

small and contain few triangles. The ray vs triangle test is optimized to return the distance 

from the ray origin to the intersection point as an additional output. This allows the final 

part of the algorithm to simply return the closest intersection point. 

The quad tree is interesting because it requires a tradeoff between memory usage and 
speed in a way that is not merely hypothetical. Adjusting the depth of the tree drastically 

changes memory footprint and speed of the algorithms. My engine uses a somewhat high 

depth to ensure performance at the cost of significant memory, as the engine is expected to 

run on a game development machine. Other types of intersections may benefit from a lower 

depth, such as a frustum vs terrain test, which has many more node hits than the ray. 



Because of this, I added a maximum depth parameter to some tests so that any granularity 

of nodes can be used. 

 

GPU Brush Architecture 

The central function of the terrain editor is sculpting, which means changing the 
topography of the landscape. In code, this means editing the heightfield image such that the 

terrain model is adjusted accordingly. There are some complications, however. Firstly, the 

image has to be updated efficiently so that it can be edited in real time. Second, the height 

data has to exist on both the GPU for rendering and on the CPU for efficient queries and to 

update the quad tree. Third, the edit function has to provide an interface for its size, 

location, and strength that may also be used for other tasks such as texture painting. The 

GPU brush architecture solves these problems. 

The base class for brushes defines the interface below. Paint() is the central method that 

defines how the brush “paints” the terrain. Each brush also has a ShiftPaint() method that 

does some alternate operation, usually the inverse of Paint(). Each brush also receives 

update calls while it is active for updating internal state and the GUI.  

 

class ComputeShaderBrush 
{ 
public: 
    virtual PaintResult Paint(float radius, const Vec3& center, float force) = 0; 
    virtual PaintResult ShiftPaint(float radius, const Vec3& center, float force) = 0; 
    virtual void Update() = 0; 
    virtual void UpdateGui() = 0; 
           // ... 
}; 



The sculpting implementation of the brush defines painting as editing the heightfield with 

some compute shader. The brush internally binds the heightfield texture as a read-write 

shader resource. Further derivations provide the concrete shader implementation and any 

additional resources needed. The shader implementation is then dispatched in parallel on 

the GPU based on the given location, size, and force of the brush. The shader is able to 

update the texture in VRAM extremely fast, but the height data needs to be pulled back 
down to the CPU. This is done asynchronously by using the DO_NOT_WAIT flag when 

mapping the texture back to the CPU. Each frame, the map is requested and eventually 

succeeds when the texture is ready. Then, the data is stored, and the quad tree is updated to 

reflect the new height values.  

Updating the quad tree and other data on the CPU can be slow for large edits where 

millions of vertices may have changed. However, the data must be updated so that the 

user’s mouse clicks continue to perform accurate intersections based on what they can see. 

To handle this, a maximum number of vertices in the changed area are permitted to be 

processed each frame after the download. The remaining vertices are queued to be 

processed in subsequent frames. This ensures a smooth minimum framerate at the cost of 

some latency in updating. This tradeoff is elegant because the latency only increases as the 

size of the edit becomes very large. So, for small, close-up edits, there is virtually no latency 

which allows for high user precision. On the other hand, for large edits, the camera tends to 

be very far from the terrain’s surface, so the user is not as concerned with the exact 

intersection point of the mouse ray, so some latency in backend update is not noticeable. 

Sculpt Modes 
The most basic sculpt mode is the Raise brush. This simply raises and lowers the terrain 
creating mounds and valleys. In the shader, the thread ID is used to add the delta height to 

the heightfield image at the correct coordinate. The infrastructure needed to support this 

brush is reused for the more complicated implementations. 

 



The Flatten brush flattens an entire area to a specific height. This is useful for creating 

plateaus or man-made areas. The target height can be sampled from the world using the 

alternate paint method. 

 

The Smooth and Soften brushes are two versions of a blur filter. The blur is applied to the 

terrain heightfield using a convolutional matrix, loaded as a buffer to the brush shader. 

Smoothing is an average blur while soften is a Gaussian blur. The average blur creates 

ramp-like features and completely averages out the area, while the Gaussian blur removes 

hard edges but preserves the existing character of the topography.  

 

 



Lastly, I implemented a Noise brush which raises and lowers the terrain based on a noise 

texture. The brush can generate random Perlin Noise textures from the GUI which are 

bound to the brush shader as a resource. The texture is sampled and multiplied by the 

brush force to apply the noise to each vertex under the brush. This brush can be used to 

create roughness on the surface or even to generate entire mountain ranges. The alternate 

paint method subtracts from the heightfield, allowing a somewhat convincing erosion effect 
when an appropriate noise texture is used. 

 

Texture Splatting 
A good terrain system needs to support multiple textures in different areas of the 

landscape. These textures need to have smooth transitions between the different types. 

Also, the architecture needs to be conducive to editing the textures under the brush 

interface. To achieve these goals, my engine implements the texture splatting technique. 

This is a technique where a matrix of vectors is created. Each cell of the matrix represents a 

small area on the terrain, and the vector represents the weight of each available texture at 

that cell. The pixel shader then samples the weight vector based on the world position. For 

each weight in the sampled vector, the associated texture is sampled, multiplied by the 

weight, and added to the output. The resulting color is the weighted combination of each 

texture according to the vector. 

Texture splatting works well because it provides smooth, per-pixel blending between the 

textures. Also, the matrix of vectors is very similar to the heightfield, so we can create GPU 

brushes under the same interface that write to the texture matrix instead of the heightfield. 

Like the heightfield, the texture data needs to be downloaded from the GPU. This is mainly 

to be able to save the texture data to a file, but a game may also want to query the texture at 

a given location for various effects, such as the sound of footsteps.  

Texture Paint Modes 
The central paint mode is called Paint. This brush writes to the texture splatting matrix 

instead of the heightfield, as described previously. It sends an additional parameter to its 



compute shader, which is a layer mask vector. This vector tells the shader which element of 

the target vector to change without any conditionals. The layer mask is adjusted based on 

which texture the user wants to paint with. 

 

The other paint modes are Smudge and Gaussian Blur. Smudging is an average blur filter 

that dramatically mixes all nearby textures together. The Gaussian Blur is a more subtle 

brush that smooths out any harsh transitions between texture zones. These brushes are 

very similar to their sculpting counterparts.  

 

Foliage Architecture 
Foliage describes models added to the landscape as decoration, such as trees, grass, and 

rocks. Foliage presents unique challenges because a realistic scene needs to support an 

extremely high number of foliage instances on the terrain. Additionally, the engine needs to 

support painting and erasing foliage instances under the brush interface.  

Rendering thousands of foliage models with a standard draw call is too slow. The go-to 

solution is GPU instancing, where each type of foliage is rendered with a single draw call 



with additional input data describing each instance. GPU instancing alone is not sufficient, 

because most of the foliage on the terrain is probably not visible or may be so far away that 

it does not need to be rendered. Hence, frustum culling is used to only render the instances 

that are necessary, allowing for much more dense foliage across the entire game world. 

These optimizations affect how foliage information is stored. Firstly, each foliage type only 

needs one copy of its graphics resources. For each instance of that type, the world 
transforms and other flyweight properties are stored. These instances are organized into 

buckets based on the partition of the terrain they are contained in. This allows the 

rendering system to perform a camera frustum vs terrain test, using the quad tree, and only 

render the foliage in the visible partitions of the terrain. 

Many vegetation models are simple quads that are mostly transparent. This requires some 

sort of blending to give the foliage the correct appearance. DirectX provides the 

CD3D11_BLEND_DESC::AlphaToCoverageEnable flag which magically blends everything 

correctly and is recommended for dense foliage.  

The foliage lies on the surface of the terrain, but with the sculpt brushes, the topography 

might change. Therefore, each foliage instance samples the terrain height in the vertex 

shader to determine its world position, which allows the foliage to automatically update as 

the terrain is sculpted. Furthermore, some types of vegetation should follow the normal of 

the terrain, while others always stand roughly upright, like trees. So, a flag determines 

whether the normal is also sampled and used as the up axis. 

 

Foliage Brush 
The Foliage brush extends the brush interface from sculpting and texture painting into the 

foliage system. This brush is not implemented as a shader, but rather uses the brush 

parameters to spawn instances under the brush’s area. These instances are then rendered 

using the foliage architecture described previously. The alternate paint mode simply 

removes instances under the brush. The brush strength determines how quickly instances 



are spawned or removed, which is accomplished internally with a timer. The brush has 

additional parameters for random variations in rotation, scale, and color tint. 

Lighting 
To enhance the atmospheric world building capabilities of the engine and demonstrate the 

lighting effects of the landscape, I implemented a lighting system. The lighting system 

centralizes light data for each light type, which is referenced by each lit shader to create a 

consistent lit environment across all such shaders.  

The light data is written to by light components that are attached to game objects. The light 

component contains all of the light properties for the given type. The game object transform 

informs some of the light properties referenced by the shaders. For example, a directional 

light component’s direction property will be derived from the local forward axis of the light 
object. For point lights, the world position is used as the light position. This allows existing 

object transform widgets to be used elegantly to adjust the lighting in the scene and is 

similar to existing commercial engines.  

 

The terrain is a lit model, and it implements some special techniques to improve the surface 

appearance. Firstly, the normals are calculated based on the average face normal around 

each vertex. The normals are calculated at runtime for simplicity, but a better system might 

store and update these in a texture similar to the heightfield. Additionally, the textures used 
in the texture splatting system can provide a normal map. This is sampled, based on texture 

weight, in the pixel shader to add per-pixel normals to the terrain surface. This greatly 

increases the visual quality of the terrain at minimal cost, and nicely fits into the texture 

splatting system.  

Adventure Demo 
To demonstrate the usability of the terrain and world editing system, I created a small 

adventure game demo. This demo imitates a modern top-down game where an animated, lit 

character can be moved across the terrain surface. The demo highlights how the sculpted 



terrain can be accurately queried to interpolate the height of the character using 

barycentric coordinates. Also, it shows the visual quality of texture layers with normal 

maps as the light moves. Dense and diverse foliage objects have been painted onto the 

landscape, and they are rendered efficiently. Lastly, it shows how some engine tools such as 

the mouse raycast can be exposed as an API to the game code for tasks like clicking on the 

terrain to control the character. 

 

Improvements 
One improvement to explore would be using a vertex and pixel shader to edit the 

heightfield for the GPU brushes. Here, a quad mesh could be positioned, scaled, and rotated 

based on the brush parameters. Then, a pixel shader would perform the texture edit. The 

upside would be the ability to rotate the quad, which is not possible with the current 

implementation. However, the simplicity of the compute shaders may be preferable to 

setting up a more complicated rendering pipeline.  

Level of detail optimizations could be implemented in several domains across this system. 

Reducing the number of triangles in distant parts of the terrain and foliage would allow for 

an even larger scene.  

One main limitation of this system is that the terrain size is fixed for any given terrain asset. 

It may be desirable to reimplement the system to support an “infinite” terrain to create a 

much larger world. This would require breaking up the terrain into pages, which could have 

additional improvements to data transfer speed between the CPU and GPU. The pages could 

then be loaded and unloaded dynamically depending on where the player or editor is 

looking. 

 



Sources 
ImGui 

https://github.com/ocornut/imgui 

Interactive GPU-based Procedural Heightfield Brushes 

https://www.researchgate.net/publication/220795036_Interactive_GPU-

based_procedural_heightfield_brushes 

Effective GPU-based Synthesis and Editing of Realistic Heightfields 

https://www.decarpentier.nl/downloads/EffectiveGPUBasedSynthesisAndEditingOfRealist

icHeightfields_thesis.pdf 

Fast Minimum Storage Ray-Triangle Intersection 

https://cadxfem.org/inf/Fast%20MinimumStorage%20RayTriangle%20Intersection.pdf 

An Efficient and Robust Ray–Box Intersection Algorithm 

https://people.computing.clemson.edu/~dhouse/courses/405/papers/bounding-box-

tests.pdf 

Efficient Intersection of Terrain Geometry in Real-Time Applications 

https://odr.chalmers.se/server/api/core/bitstreams/a48948b6-2d80-49c2-ba68-

cbc7e0895f5e/content 

Perlin Noise 

https://github.com/stegu/perlin-noise/tree/master 

Instancing (With Indexed Primitives) 

https://www.braynzarsoft.net/viewtutorial/q16390-33-instancing-with-indexed-

primitives 
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