
Global Software Engineering for Game Development

How the unique challenges of game development impact global engineering techniques.

Robert Grier
 College of Computing and Digital Media

 DePaul University

 Chicago, Illinois, U.S.

rgrier@depaul.edu

ABSTRACT

Video game technology requires the combination of diverse

creative expertise with strong software engineering practices. In a

globally distributed software engineering environment, the

interplay between subjective design and pragmatic engineering

must be carefully managed to create a symbiotic relationship

between teams who are potentially distributed in terms of

geography, culture, and skillset. In this paper, I outline how global

development impacts the software architecture, version control,

and validation techniques used in game development to further

understand the industry’s deviations from standard software

development 1 . In addition, I argue for improvements and

considerations for global engineering in general by juxtaposing

these game development practices with more widespread

techniques.

At their core, video games are software products. Content aside,

games are not so different from other consumer desktop

applications. However, the content served by this software core

has a dramatic impact on its design, performance requirements,

and definition of quality. To be valuable as a product, the game

must be fun to play. The way to accomplish a fun design is

subjective and requires the genius of artists, audio specialists,

writers, and gameplay designers.

The interaction between the software team developing the core

application and the creative teams developing the content is at the

core of what makes game development different from traditional

software development. In a globally distributed environment,

these teams are often distributed geographically or separated by

organizational structure. Thus, the challenges of developing a

creatively driven software product are compounded by the

challenges of global engineering.

KEYWORDS

Global software engineering, globally distributed software

development, games, software architecture, source control,

playtesting

1 Standard software development refers to pure software applications with traditional

functional requirements.

1 Engineering Challenges in Game Development

The most common problem in the interaction between creative

teams and engineering teams in game development is the issue of

fluid and subjective requirements coming from the creative teams.

Kasurinen et al [2] note that “changes to the product design during

the development phase” is a key point in their review of what

concerns game programmers. Wang and Nordmark [6] open their

study of game architecture by stating that “there are no real

functional requirements” for games. In other words, the testable,

objective metrics that guide traditional software products are

mostly absent. Instead, developers must accommodate a creative

vision and the subjective experience of the end user.

The creative vision component is further complicated by the fact

that there is a diverse set of creative teams, including the visual,

audio, experiential, and narrative arts. These specialties may even

be globally distributed and externally sourced to ensure high

quality across all domains [1]. With this comes a diversity of

culture and expectations for how the software might serve their

creative process. Furthermore, these inputs must be balanced with

the performance demands of a real-time application.

In their review of research on game development architecture,

Mizutani et al [3] illustrate that there are “no standard or

completely generic implementations” for games because of the

fluid nature of the requirements. Compared to other domains

where a particular algorithm might have a well-defined, optimal

definition, elements of a game’s behavior might need to be finely

tuned to accomplish the desired effect.

2 Architecture for Creative Applications

The challenges laid out previously present an opportunity for

strong software architecture. However, the research that has been

done shows a lack of formality around software architecture in

games, with some evidence showing that programmers put less

emphasis on architecture “because there is such a high probability

that parts of their code will be thrown away” [4]. This is

anecdotal, but it helps to illustrate the extreme nature of fluid

requirements.

November 2023, Chicago, Illinois U.S. R. Grier

In response to the idea that there are no functional requirements at

play here, I propose that game programmers should aim to treat

subjectivity as a functional requirement itself. With this as a

guiding principle, the accommodation of design changes should

be the core function of game software. The creative team’s desire

to change elements of the product should be seen as valid and as

the defining requirement of the software. Game software that can

be easily changed and iterated on will be more likely to produce a

stronger product.

2.1 Data Driven Architecture

One specific technique that plays into this idea and is cited by the

research is the Data Driven Architecture. Here, content can be

represented as data and fed into a core executable to change the

software’s appearance and behavior. This architecture “offers a

practical way of changing software behavior without modifying

the codebase” [3], and it is analogous to patterns like

Configuration as Code in other domains. The core executable

here must be generalized in a sense, and more general code is

usually seen as preferable to implementation specific code.

However, Data Driven Architecture is generalized in a more

targeted way because it must balance the potential arena of

creativity being fed into the application with the performance

demands of the real-time simulation in which that arena is

presented. Like many other patterns, this architecture is the

distillation of an abstract principle into a tangible, specialized

solution.

This architectural pattern has some implications for global

development. Chiefly, a purely data driven development tool can

be distributed as a single executable to distributed teams. It can

also enable the protection of proprietary source code from any

number of external teams because they only needed to be

provided with the pre-built application.

2.2 Product Oriented Architecture

The dynamism of data-driven design can be taken a step further

with Product Oriented Architecture. In this paradigm, I propose

that distributed game development studios could improve the

architecture of creative applications by productizing the software

components. This means reframing the software as a product or

tool that is self-contained and can be completely driven by a

creative team to create a video game. The product definition can

be used internally by organizations to define a common language

between the software engineering team and the creative teams. In

addition, clear boundaries of the software’s capabilities and

possible extensions can be defined.

By treating the software as a product, teams can transition internal

software tools into external tools. Internal interfaces and support

mechanisms translate to external communication with distributed

teams and even third-party customers. Support for external teams

likewise benefits internal communications, as all creative users

are interacting with the software as a single product.

Toftedahl and Engström’s [5] taxonomy of game engines and

tools tries to formalize the types of software products that exist in

a modern game development pipeline. The breakdown of the

pipeline into specific tools highlights the opportunity to create

more standalone products out of the menagerie of software

maintained in the support of creative applications. An example of

this strategy is exemplified by commercial game engines, which

treat the pipeline as an all-in-one tool that can be sold to other

game developers. Often, engine developers are clients of their

own tools and are therefore benefiting internally from treating

their software as a product.

3 Version Control for Global Game Development

Using the correct version control solution is essential for effective

distributed development. In game development, centralized

version control systems seem to be strongly preferred over

popular distributed solutions such as Git. Specifically, the

Perforce Helix Core solution (commonly just referred to as

Perforce) targets game developers with its features and is the

most referenced centralized version control in the industry [8]. In

this section, I will analyze the technical and cultural reasons why

this is the case. The scholarly literature on version control for

global game development is extremely limited beyond mentioning

the fact that it is used, so documentation from the various projects,

providers, and experts is used.

It is helpful to understand the differences between a centralized

and distributed system, and the specific differences between the

likely candidates: Perforce and Git. Perforce provides a single

copy of a repository’s history and configuration on the server, and

users simply retrieve a snapshot of the version they want. Git, on

the other hand, distributes all the information about a repository to

each cloner, so it is replicated on each machine. This makes Git

more flexible, but it might not scale as well as Perforce when

large binary files are common, depending on how the project is

implemented and maintained [8]. In another scenario, Git might

scale better because there is no bottleneck of a central server for

common operations performed by thousands of developers [7].

Another key difference is how projects are organized and

managed. Git is repository oriented, meaning that repositories are

semi-isolated environments and security is managed at a

repository level. Perforce, on the other hand, allows managing

security at different granularities irrespective of how the project is

organized [8]. Lastly, Git’s distributed model allows for

completely independent offline development, whereas Perforce is

more connected. This connection provides some visibility into

work in progress [8], but is less flexible.

3.1 Centralized Version Control Motivation

There are several technical and cultural reasons why the game

development industry prefers the centralized version control of

Perforce to enable their global, cooperative development. The

first reason is that game projects contain large binary files

alongside the source code. These binary files can be textures, 3D

models, visual scripts, and other abstract objects that mean

Global Software Engineering for Game Development November 2023, Chicago, Illinois U.S.

something to the game engine, possibly playing a part in the Data

Driven Architecture mentioned in the previous section. Because

of the “single source of truth” [8] provided by the centralized

history, there is less duplication of the large binary files and their

diffs. This makes it faster for developers to fetch content and takes

up less space on their machine.

An additional feature that games projects depend on is the

“exclusive checkout” of these binary files. This means that one

user can lock a file and has exclusive access to it to make changes.

For a Git user, this might seem contrary to the purpose of good

version control. However, it is essential for binaries that are edited

as part of the development process because changes from multiple

developers cannot be merged in a binary the same way they can in

a plain text code file. If two developers were to make changes,

one would have to override and nullify the other’s work. Git’s

Large File Storage solutions lack mature support for this type of

workflow [7].

The emphasis put on large, diverse asset types in video game

repositories is valid when discussing version control solutions

because these assets contribute to the development process in a

special way. In less specialized software projects, large files and

binaries tend to be generated or independent of the source code.

Here, however, it is helpful to treat binaries as first-class objects

and have a symmetric workflow for working on code and content.

By storing assets directly with the code in a centralized server,

developers can avoid the complexity, maintenance, and dynamic

costs of Git LFS or artifact servers.

The security benefits of the centralized Perforce product may also

contribute to its success in this industry [8]. Game development

managers working with distributed teams may find it beneficial to

implement granular security controls for specific files, such as art

files contributed by an external team. This can be done without

changing the organization of files and potentially limiting the

direct integration between assets and source code. In general,

some software teams who work with Git are considering a

transition from a many-repository structure to a mono-repository

structure. The reasons are the ability to reuse code libraries across

the organization, unify the build system and automation pipelines,

and reduce the administration burden of repositories. One issue

these teams might encounter is the inability to provide granular

security in the mono-repository, especially when working with

contractors and external teams. The options provided by

centralized version control might be worth the transition for these

specific teams.

In addition to the technical reasons why the centralized version

control is preferred in video game development, there are cultural

and historical reasons. As has been discussed, game projects

require contributions from non-technical, creative teams. Perforce

provided a GUI client from the start, and thus gained traction with

these teams in terms of usability before the rise of modern Git

GUIs. Additionally, Perforce has always been designed for

Windows development, which benefits non-technical contributors

and game developers in general [7]. In summary, Perforce had

targeted the needs of game development long before modern Git

solutions started making progress toward that end.

3.2 Version Control Conclusions

There are both technical and cultural reasons why centralized

version control thrives in the game development world. Chiefly,

large binary assets as part of the product source benefit greatly

from the centralized models for many reasons. In general, version

control can become mundane in the life of engineers and

organizations, so the costs and benefits of various solutions are

not often considered. However, it is important to understand that

these engrained preferences arise from strong technical

motivation.

A hypothetical, future version control system might be designed

to accommodate the needs of game developers while preserving

the dynamism of other systems like Git. Perforce provides a tool,

Helix4Git, that makes progress toward this idea. Integration with

the major source control hosting services could help a hybrid tool

gain traction. There is room for providing standardized source

control software and hosting that can bring programmers and non-

technical contributors together under a common interface.

4 Global Testing and Validation of Games

The creative aspect of game development has consequences for

testing and validation. The subjective nature of the final product

makes testing difficult, because it is hard to declaratively say what

the correct behavior should be. Instead, success is based on the

amount of fun and the smoothness of the experience. Because the

user can perform many different actions, there is often an

uncountable number of situations, making it “harder to explore the

state space in games” [4] with automated testing. Furthermore,

randomness and emergent behavior in games do not lend

themselves to automated testing. Because of these challenges,

automated unit tests are not seen as important by game developers

because the general feeling of the game is the key indicator of its

success [4].

4.1 Playtesting and Outsourcing

According to research, the main avenue of testing game software

is the concept of Playtesting. Playtesting allows the game to be

tested by simply playing it, allowing the emergent behavior of the

simulation to be evaluated for both technical performance and

experiential quality.

Murphy-Hill et al suggest that the reason “human testing is so

common is because it is relatively cheap” [4]. Cost is a major

concern for game development companies, especially given the

unpredictable timeframes implied by the challenges previously

discussed. Fatima et al suggest that a major way to reduce costs is

to embrace global software engineering and practice outsourcing

[1]. Playtesting is an area where outsourcing might provide

enough benefits without sacrificing the quality of the product. If

November 2023, Chicago, Illinois U.S. R. Grier

the Playtesting is left to an external team, their outside

perspective might provide better feedback than the original

developers interpretation of their own work. One consideration

that should be made is whether these external teams are

representative of the culture and community of the target

audience. Secondly, although testing can be easily distributed

because it requires less technical involvement than development,

the testing team should still have a high-level understanding of the

technology so that they can give meaningful feedback.

4.2 Unit Testing and Automation

Some research suggests that avoidance of automated unit testing

in game development is based on fears that code might need to be

thrown out when creative changes are requested [2]. Furthermore,

because the technology might be designed for a product that is

released once, testing is seen as waste because the code will not

need to be maintained later [2].

The concept of Product Oriented Development could give a

lifeline to unit testing practices in game development. By clearly

defining the boundaries of internal software products, companies

could find areas of their code base that can be tested as isolated

products. This type of development would encourage smaller

modules, which in turn creates opportunities to test those modules

before they are used elsewhere. This also would create a culture

where software products are expected to be reused, rather than

expected to be thrown away, further justifying rigorous,

automated tests.

5 Conclusion

This article has discussed the challenges presented by game

development and the software behind creative applications. These

challenges present significant complications, and some solutions,

when introducing the practice of global software engineering.

Firstly, software architecture can play a key role in reducing

friction between teams distributed globally and teams of diverse

expertise. Techniques like Data Driven Architecture and

Product Oriented Development can be further formalized to

accommodate the fluid requirements presented to software

engineers in this space. Game programmers can evolve their

approach to software architecture to better handle a globally

distributed environment. Secondly, the version control divide

between video game developers and standard software developers

needs to be formally researched to understand how distributed

teams can improve their code and asset collaboration. In addition,

more research might reveal the next evolution of version control

that combines the best qualities of the current solutions. Thirdly,

testing and validation is uniquely challenging for games, but

global development can be a boon to practices like Playtesting.

Improvements in architecture can encourage more automated

testing in the industry.

Creative input is the defining feature of game development and

presents unique challenges to globally distributed development.

This creates an extreme environment for architecture, asset and

code management, and software validation. Successes in this

environment should be researched because it could provide

revelations for global development in every domain.

REFERENCES
[1] Alia Fatima, Tayyaba Rasool, Dr. Usman Qamar. 2018. GDGSE: Game

Development with Global Software Engineering 2018 IEEE Games,

Entertainment, Media Conference (GEM) (2018) 1-9. DOI

10.1109/GEM.2018.8516498.

[2] Jussi Kasurinen, Maria Palacin-Silva, Erno Vanhala. 2017. What Concerns

Game Developers?: A Study on Game Development Processes, Sustainability

and Metrics. IEEE/ACM 8th Workshop on Emerging Trends in Software

Metrics (WETSoM) (2017). DOI 10.1109/WETSoM.2017..3

[3] Wilson K. Mizutani, Vinícius K. Daros, Fabio Kon, 2019. Software architecture

for digital game mechanics: A systematic literature review, Entertainment

Computing, Volume 38, (2021), https://doi.org/10.1016/j.entcom.2021.100421.

[4] Emerson Murphy-Hill, Thomas Zimmermann, Nachiappan Nagappan. 2014.

Cowboys, Ankle Sprains, and Keepers of Quality: How Is Video Game

Development Different from Software Development? ICSE'14 (2014) 1–11.

DOI 10.1145/2568225.2568226.

[5] Marcus Toftedahl, Henrik Engström. 2019. A Taxonomy of Game Engines and

the Tools that Drive the Industry. Proceedings of DiGRA 2019 (2019). URN

urn:nbn:se:his:diva-17706.

[6] Alf Inge Wang and Njål Nordmark. 2015. Software Architectures and the

Creative Processes in Game Development IFIP International Federation for

Information Processing. ICEC, LNCS 9353 (2015) 272–285. DOI 10.1007/978-

3-319-24589-8_21.

[7] Atlassian Corporation. Perforce to Git: Why make the move. Retrieved from

https://www.atlassian.com/git/tutorials/perforce-git.

[8] Perforce Software, Inc. 2019. Git vs. Perforce: How to Choose (and When to

Use Both). Retrieved from https://www.perforce.com/blog/vcs/git-vs-perforce-

how-choose-and-when-use-both.

https://www.atlassian.com/git/tutorials/perforce-git
https://www.perforce.com/blog/vcs/git-vs-perforce-how-choose-and-when-use-both
https://www.perforce.com/blog/vcs/git-vs-perforce-how-choose-and-when-use-both

